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We suggest a new coupled Liouville equation which is exactly solvable. We 
obtain the Lax pair through a prolongation analysis and also obtain the exact 
one-soliton-like solution by a direct procedure. We confirm our result through 
a Painlev6 analysis of the similarity reduced systems. 

1. INTRODUCTION 

The Liouville equation plays a central role in theoretical studies on 
string theory (Trieste, 1986) and nonlinear equations in two dimensions. 
The intimate connection of this equation with the infinite-dimensional Lie 
algebra is one of the most important properties of the equation. Here we 
suggest a coupled version of the Liouville equation which is proved to be 
completely integrable in the sense of Painlev6 (Weiss, 1985), can sustain 
soliton-like solutions, and possesses a Lax pair. 

2. FORMULATION 

2.1. Prolongation Theory 

The equations we study are 

qx, = ItFxqt + It * Ftqx 
(1) 

Fxt = * * + * e - 4 f F  (I t qxqt I tqtqx) 

(It, f )  are complex constants. 
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For the derivation of  the Lax pair, we follow the method of Whalquist 
and Estabrook (1975). We define a number  of  independent variables 

q~ = S, q*  = S * ,  q, = R ] 

Fx = Z, F, = V, q* = R* ~ (2) 

We now recast (1) and (2) in the language of  differential forms, 

a l  = dq  A d t -  S d x  ^ d t  

a2 = d q  A d x  + R d x  A d t  

a3 = dq*  A d t  - S *  d x  ^ d t  

a4 = d q *  A d t  + R *  d x  A d t  

as  = d F  ^ d t  - Z d x  A d t  

a6 = d F  A d x  + v d x  A d t  
(3) 

a7 = ds  A d x  + l z Z R  d x  A d t  + tz * V S  d x  A d z  

a 8 = d v  A d t  + ( # * S R *  + t x R S  *) e -4fF d x  A d t  

a9 = d R  A d t  + d S  ^ d x  

alo = d R *  A d t  + d S *  A d x  

a u  = d z  A d x  + d v  ^ d t  

a~2 = d S *  ^ d x  + (Iz * Z R *  + I~VS*)  d x  ^ d t  

The closure property of  this set is easy to demonstrate. We now proceed 
to search for a differential one-form 

toJ = dyJ  + H J  d x  + GJ  d t  (4) 

where 

H ~ = H i ( R ,  S, R*, S*, Z, v, q, q*, F, x, t) 

G ;  = G ; ( R ,  S, R * ,  S*, Z, v, q, q*, F, x, t) 

Imposing the closure on the exterior derivative of  to; in the form 

dto j = d H  ~ ^ d x  + d G  j ^ d t  

= ~, giai + ( a d x  + b d t  ) A toJ 

we get 

HR = HR* = H v  = G s  = Gs* = G z  = 0 (5) 
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along with 

[H, G] : G q S -  HqR + Gq.S* - Hq.R* + GFZ 

- H F V -  (tzZR + Iz* VS)(Hs - GR) - (Iz*SR* 

+ tzRS*) e-4YF(Gv - Hz)  - (Iz*ZR* + tz VS*) 

X ( H s . -  GR*) 

We now set 

H = SH 1 + S* H 2 + Z H  3 + H 4 

G =  RGI + R*G2+vG3+G4 

which immediately implies 

[HI, (]2] = -- tz  * e -4 fF (  G 3 _ H3) 

[/-/1, G3] = --HIF --/z*(H, - G,) 

[/-/2, G1] = - /z  e - 4 f F ( G  3 - H3) 

[H4, 03] = - - H 4 F  

[n3,  64] = G4F 

[/-/2, G2] = 0 

[H2, G3] = --H2F--/z(H2)- G2) 

[/-/3, G,]  : G , ~ -  ~ ( H ,  - G,)  

[Ha, G j  : G2F - / z * ( H 2 -  G2) 
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(6) 

(7) 

along with 

H4= G4, H3= G3= X3, H2= X2, G2= Y2 

[83, Q]=-H3F  + QF 

where the subscript F stands for partial derivative with respect to it and 

(A .  S B _ B .  SA ~ 
[A' B] =E  \ 'Syk 'Syk] 

The Yk are the prolongation variables. To reduce equations (7) to a set of 
algebraic commutation rules, we make the following choices: 

I--I4 _~. e-4fF x 4  

Hi = e-4fF x1  (8) 

G 1 -- e-*fF Y1 
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where each X~ and Y~ are thought of as functions of the prolongation 
variables only, i.e., they depend on the Yk. With the prescription (8) we 
obtain immediately, from (7), 

IX4, Y,] = 0, 

IX4,  Y2] ~- 0, 

[x~, x4] = 0, 

IX,, Y2] = O, 

[X,,  Y,] = O, 

I x , ,  x , ]  = 0, 

IX4,  X3] ~-- 4fX4 

[X,,  X3] = 4 f X ,  - tz * ( X ,  - II1) 

IX2, Y,] = 0 

[X~, Y:] = 0 

[X~, X3] = - ~ , ( X 2 -  Y~) 

IX3, Y1] = 4 f Y , - I z ( X 1 -  YI) 

[X3, ]I2] = - / z* (X2-  ]I2) 

(9) 

The next problem in the prolongation analysis is the closure of this Lie 
algebra (Roy Chowdhury, 1988), for which many techniques have been 
suggested, but none of them with a full proof. In the present case we have 
utilized the Jacobi identities and have tried to identify the unknown commu- 
tators. 

We also make the observation that we already have two sets of closed 
sets of Lie algebra generated by {X1, X3, II1} and {X3, Y2, X2}, given as 

[ X l ,  X3] -~- 4fX, - ]d,:~(Xl - Y1) 

[X3, I(1] = 4 fY1- / z (X1-  I(1) (10) 

and 

[x , ,  Y1] =0  

[x3, Y2] = - z * ( x 2 -  Y2) 

[X2, X3] = - i t  (X2-  Y2) (11) 

[x : ,  Y:] = 0 

It is possible to map (10) to (11) by the choice X1 = a X : ,  Y1 = ,8Y2 with 
tt = ( /3/a)t t* o r / 3 / a  = t t / t t* .  Also, it is possible to set X4 = X6 = 0. So we 
may write 

H = ZX3 + S ' X 2  + S e-4fFx I 
(12) 

G = X3+ R* Y2+ R e - 4 f F y  1 

The algebra depicted in (10) and (11) can be represented by 3 • or by 
2 • 2 matrices, depending on the values and relations between the parameters 
/z,/z*, and f. 
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2.2. Scaling lnvariance 

It is now interesting to note that our equations are invariant under the 
transformation x '=  Ax, t '= o-t. Because under the scaling transformation, 
H-~  H ' = H / A  and G ~  G ' =  G/o-, we have 

to ' = dy + H '  dx'  + G'  dt' 

= d y + ( H / A )  d x + ( G / o - ) o - d t  

= d y +  H d x + G d t  

=to (13) 

So the Lax pair does remain unchanged under this kind of transformation. 

2.3. Explicit Wavelike Solutions 

To search for progressive solutions we set 

z =  x -~T t  

whence equations (1) become 

qz = e ( '~+~  *)F+ B (14) 

Fzz = -(/-~ +/-~*) e ~F§ (14a) 

Equation (14) can be integrated immediately and we obtain 

F = l l o g [  2(/.t + 2 , )  (coth2 ~ - -  1) - ~ ]  (15) 

Solution (15) when used in (13) yields 

q = e_ B, co- f (  ~_)( '+~*)/~ 2(/x +/x*) c~ dz (16) 

The quadrature in (16) can be performed for some specific values of 
/z +/x*/o- and in particular for (/z +/~*)/o- = - 1 ,  in which case we obtain 

-B'4(/zc~ [ 1 . .) q = - e  , i ~ c c  slnh zx/-c- z 

In the above expressions for these solutions we have used 

B'= B ( 1 - 2 )  (/x +/z*), o" = 2(/z + / z * ) - 4 f  
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2.4. Complete Integrability and Painlev6 Analysis 

Any nonlinear system, if  it possesses a Lax pair, is usually associated 
with an infinite number  of  conservation laws, and such systems are known 
to be completely integrable. In the present case we now apply the Painlev6 
criterion as advocated by Ablowitz et al. (1980) to test the complete integra- 
bility of  our system. According to Ablowitz et al. (1980), a partial differential 
nonlinear system is to be termed completely integrable if and only if all 
its possible symmetry-reduced ordinary nonlinear equations pass the 
Painlev6 test. 

Our system does have translation symmetry which dictates the propa- 
gating wave, and since the reduced equation (14) is already of Liouville 
type, nothing remains to be tested. 

A second invariance is the scale invariance as noted in Section 2.2. So 
we must have a solution of  the form 

F(x,  t) = F'(~:); q(x, t) = q'(sr); ~ = x / t  (17) 

Transforming the original system to this new variable, we get 

q'e~ + ~  = (tz + Iz *)q~F~ 

F'  + F'e - e-4fF' ee " -~- - - ( t x  + tz *)q~q~ (19) 

Integrating equation (18), we get 

q, _ 1 eO,+i**)v, (20) 
e -so  

and if we set e ~F'= g, then we arrive at 

sC2ggee - ~2g2e+ "~gge = - o-(/~ +/**)g3 (21) 

So equation (21) is the required nonlinear ordinary differential equation 
for which the Painlev6 analysis is to be performed. 

The basic phi losophy of  a Painlev6 test is to assume an expansion of  
the solution g over the solution manifold. In our case we set 

g -- Ho(~:- ~:o) = Hoq 5~ 

By comparing the most singular terms in equation (21), we get 

2 2 
a = - 2 ,  Ho = - ~-  ~:o (22) 



New Coupled Liouville System 125 

with K = cr(/~ +/x*) .  N o w  we set the expans ion  

co 

Y = Z /-/j~ bs-2 
j=o 

But before  compar ing  powers  of  (~:-~o) ,  we mus t  wri te  

a 2 = (,b + ~o) 2 = ,~2 + 2 ~ o  + ~ 

Equat ing  the same powers  of  ~b, we get 

[ ~gHo(n - 2 ) ( n  -3)+6~gHo+4~Ho(n -2)+3KH~]H. 
r l - - I  

+ ~ Y HsH,_s(s-2)(s-3) 

n--1 

-~2o ~, HsH._s(s -2) (n-s -2)  
s = l  

n - - I  n - - I  n- -2  

+ K Z Z H~HvH.-~-v+ Z HsH.-s_2(s-Z)(s-3) 
s = 0  p = 0  s = 0  

n - - 1  n - - 2  

+2{:o Y. HsH.-s-a(S-2(s-3) Y. HsH._~_2(s-2)(n-s-4) 
s = 0  s = 0  

n - - 1  

-2~:oX Y H~H,_~_l(S-2)(n-s-3) 
s = 0  

. -~ .-1 )} 
+ Z H~H._~_2(s-2)+~o Y~ H.H._,_,(s-2 = 0  (23) 

s = 0  s = 0  

Resonance  pos i t ions  occur  th rough  the zeros o f  A = 0, where  

A ~Ho(r-2) (r -3)+ 2 2 2 = s + 4~%Ho(r - 2) + 3KHo 

= ~o~/4o(~-2)(~+ 1) (24) 

so at r = - 1 ,  2. The r e sonance  at r = - 1  signifies tha t  the  expans ion  po in t  
~o is per fec t ly  arbi t rary .  Since our  equa t ion  is o f  second  order ,  it canno t  
have more  than  two resonances .  N o w  we check the arb i t ra r iness  o f  the 
coefficient o f  expans ion  at r = 2. 

First ,  for  n = 1 equa t ion  (23) leads  to 

2 
Hi  = - ~ -  ~o (25) 

No te  that  r = 1 is not  a r e sonance  pos i t ion ,  so the  coefficient at r = 1 is 
fixed. N o w  for n = 2 in (23) we get  

\ ~o / 
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so that the coefficient cannot be determined and we get the condition 
H~ = Ho/,~o, which is identically satisfied by the values noted in equations 
(22) and (25). So we can ascertain that the proposed nonlinear system is 
completely integrable in the true sense of  the term. 

3. D I S C U S S I O N  

We have presented a detailed analysis of  a new nonlinear system, the 
coupled Liouville system. The Lax pair has been obtained by a prolongation 
approach,  the soliton-like solution can be deduced directly, and also the 
complete integrability can be ascertained via a Painlev6 analysis. Some 
comment  may be in order about  the closer of  the Lie algebra. There is no 
unique way for obtaining such a closer and various methods may lead to 
various kinds of  Lax equations for the same nonlinear equation. 
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